GPU-based acceleration of the MLEM algorithm for SPECT parallel imaging with attenuation correction and compensation for detector response
نویسندگان
چکیده
Parallel projection based Single Photon Emission Computed Tomography (SPECT) is one of the most widely used nuclear imaging technique even nowadays. Serious artefacts are produced in the reconstructed images due to the non-homogeneous attenuation medium and the distance dependent spatial resolution (DDSR) of the parallel imaging. Effective non-uniform attenuation correction and DDSR reduction procedures should be applied in order to improve the SPECT image quality. We have developed a novel parallel reconstruction method using the Maximum Likelihood Expectation Maximization iterative reconstruction algorithm with attenuation correction and compensation for the DDSR effect in the forward projector. In order to compensate the well-known extreme computation intensity of this reconstruction method a parallel version of the algorithm is created where the computation tasks of the algorithm are executed simultaneously on a GPU. By this reduction of the running time this accurate reconstruction algorithm become available for the use in the clinical applications. The algorithm has been verified using simulation studies.
منابع مشابه
A New Approach for Scatter Removal and Attenuation Compensation from SPECT/CT Images
Objective(s): In SPECT, the sinogram contains scatter and lack of attenuated counts that degrade the reconstructed image quality and quantity. Many techniques for attenuation and scatter correction have been proposed. An acceptable method of correction is to incorporate effects into an iterative statistical reconstruction. Here, we propose new Maximum Likelihood Expectation Maximiz...
متن کاملOptimization of an ultra-high-resolution rectangular pixelated parallel-hole collimator with a CZT pixelated semiconductor detector for HiRe-SPECT system
Introduction: In nuclear medicine, the use of a pixelated semiconductor detector such as CZT is an of growing interest for introducing new devices. Especially, the spatial resolution can be improved by using a pixelated parallel-hole collimator with equal holes and pixel sizes based on the pixelated detector. The purpose of this study was to compare the effect of pixelated and ...
متن کاملNew approach for attenuation correction in SPECT images, using linear optimization
Background: Photon attenuation as an inevitable physical phenomenon influences on the diagnostic information of SPECT images and results to errors in accuracy of quantitative measurements. This can be corrected via different physical or mathematical approaches. As the correction equation in mathematical approaches is nonlinear, in this study a new method of linearization called ‘Piece ...
متن کاملCollimator-detector response compensation in molecular SPECT reconstruction using STIR framework
Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT. In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...
متن کاملA model based, anatomy dependent method for ultra-fast creation of primary SPECT projections
Introduction: Monte Carlo (MC) is the most common method for simulating virtual SPECT projections. It is useful for optimizing procedures, evaluating correction algorithms and more recently image reconstruction as a forward projector in iterative algorithms; however, the main drawback of MC is its long run time. We introduced a model based method considering the eff...
متن کامل